Binomial Coefficients and Lucas Sequences
نویسندگان
چکیده
منابع مشابه
Congruences Involving Binomial Coefficients and Lucas Sequences
In this paper we obtain some congruences involving central binomial coefficients and Lucas sequences. For example, we show that if p > 5 is a prime then p−1
متن کاملBinomial Coefficients , Catalan Numbers and Lucas Quotients
Let p be an odd prime and let a, m ∈ Z with a > 0 and p ∤ m. In this paper we determine p a −1 k=0 2k k+d /m k mod p 2 for d = 0, 1; for example, p a −1 k=0 2k k m k ≡ m 2 − 4m p a + m 2 − 4m p a−1 u p−(m 2 −4m p) (mod p 2), where (−) is the Jacobi symbol and {u n } n0 is the Lucas sequence given by u 0 = 0, u 1 = 1 and u n+1 = (m − 2)u n − u n−1 (n = 1, 2, 3,. . .). As an application, we deter...
متن کاملGeneralized Levinson–durbin Sequences and Binomial Coefficients
Abstract The Levinson–Durbin recursion is used to construct the coefficients which define the minimum mean square error predictor of a new observation for a discrete time, second-order stationary stochastic process. As the sample size varies, the coefficients determine what is called a Levinson–Durbin sequence. A generalized Levinson– Durbin sequence is also defined, and we note that binomial c...
متن کاملCombinatorial interpretations of binomial coefficient analogues related to Lucas sequences
Let s and t be variables. Define polynomials {n} in s, t by {0} = 0, {1} = 1, and {n} = s {n− 1}+ t {n− 2} for n ≥ 2. If s, t are integers then the corresponding sequence of integers is called a Lucas sequence. Define an analogue of the binomial coefficients by {n k } = {n}! {k}! {n− k}! where {n}! = {1} {2} · · · {n}. It is easy to see that { n k } is a polynomial in s and t. The purpose of th...
متن کاملGeneralized Levinson-Durbin sequences, binomial coefficients and autoregressive estimation
For { t y } a discrete time, second-order stationary process, the Levinson-Durbin recursion is used to determine the coefficients , jk α j=1, … , k, of the best linear predictor of 1 + k y , , ˆ 1 1 1 y y y kk k k k α α − − − = + L best in the sense of minimizing the mean square error. The coefficients jk α determine a Levinson-Durbin sequence. A generalized Levinson-Durbin sequence, a special ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Number Theory
سال: 2002
ISSN: 0022-314X
DOI: 10.1006/jnth.2001.2721