Binomial Coefficients and Lucas Sequences

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Congruences Involving Binomial Coefficients and Lucas Sequences

In this paper we obtain some congruences involving central binomial coefficients and Lucas sequences. For example, we show that if p > 5 is a prime then p−1

متن کامل

Binomial Coefficients , Catalan Numbers and Lucas Quotients

Let p be an odd prime and let a, m ∈ Z with a > 0 and p ∤ m. In this paper we determine p a −1 k=0 2k k+d /m k mod p 2 for d = 0, 1; for example, p a −1 k=0 2k k m k ≡ m 2 − 4m p a + m 2 − 4m p a−1 u p−(m 2 −4m p) (mod p 2), where (−) is the Jacobi symbol and {u n } n0 is the Lucas sequence given by u 0 = 0, u 1 = 1 and u n+1 = (m − 2)u n − u n−1 (n = 1, 2, 3,. . .). As an application, we deter...

متن کامل

Generalized Levinson–durbin Sequences and Binomial Coefficients

Abstract The Levinson–Durbin recursion is used to construct the coefficients which define the minimum mean square error predictor of a new observation for a discrete time, second-order stationary stochastic process. As the sample size varies, the coefficients determine what is called a Levinson–Durbin sequence. A generalized Levinson– Durbin sequence is also defined, and we note that binomial c...

متن کامل

Combinatorial interpretations of binomial coefficient analogues related to Lucas sequences

Let s and t be variables. Define polynomials {n} in s, t by {0} = 0, {1} = 1, and {n} = s {n− 1}+ t {n− 2} for n ≥ 2. If s, t are integers then the corresponding sequence of integers is called a Lucas sequence. Define an analogue of the binomial coefficients by {n k } = {n}! {k}! {n− k}! where {n}! = {1} {2} · · · {n}. It is easy to see that { n k } is a polynomial in s and t. The purpose of th...

متن کامل

Generalized Levinson-Durbin sequences, binomial coefficients and autoregressive estimation

For { t y } a discrete time, second-order stationary process, the Levinson-Durbin recursion is used to determine the coefficients , jk α j=1, … , k, of the best linear predictor of 1 + k y , , ˆ 1 1 1 y y y kk k k k α α − − − = + L best in the sense of minimizing the mean square error. The coefficients jk α determine a Levinson-Durbin sequence. A generalized Levinson-Durbin sequence, a special ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Number Theory

سال: 2002

ISSN: 0022-314X

DOI: 10.1006/jnth.2001.2721